4.4 Article

A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles

期刊

BMC EVOLUTIONARY BIOLOGY
卷 16, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12862-016-0762-5

关键词

Testudinata; Sichuanchelyidae; Helochelydridae; Meiolaniformes; Sichuanchelys palatodentata; Jurassic; Xinjiang; China; Phylogeny; Biogeography

资金

  1. National Natural Science Foundation of China [41120124002]
  2. Special Funds for Major States Basic Research Projects of China [2012CB821900]
  3. National Science Foundation [EAR 0922187]
  4. German Science Foundation (DFG) [JO 928/2-1]
  5. Postdoctoral Grant of the Hungarian Academy of Sciences
  6. Train to Move Marie Curie Postodoctoral Grant

向作者/读者索取更多资源

Background: Turtles (Testudinata) are a successful lineage of vertebrates with about 350 extant species that inhabit all major oceans and landmasses with tropical to temperate climates. The rich fossil record of turtles documents the adaptation of various sub-lineages to a broad range of habitat preferences, but a synthetic biogeographic model is still lacking for the group. Results: We herein describe a new species of fossil turtle from the Late Jurassic of Xinjiang, China, Sichuanchelys palatodentata sp. nov., that is highly unusual by plesiomorphically exhibiting palatal teeth. Phylogenetic analysis places the Late Jurassic Sichuanchelys palatodentata in a clade with the Late Cretaceous Mongolochelys efremovi outside crown group Testudines thereby establishing the prolonged presence of a previously unrecognized clade of turtles in Asia, herein named Sichuanchelyidae. In contrast to previous hypotheses, M. efremovi and Kallokibotion bajazidi are not found within Meiolaniformes, a clade that is here reinterpreted as being restricted to Gondwana. Conclusions: A revision of the global distribution of fossil and recent turtle reveals that the three primary lineages of derived, aquatic turtles, including the crown, Paracryptodira, Pan-Pleurodira, and Pan-Cryptodira can be traced back to the Middle Jurassic of Euramerica, Gondwana, and Asia, respectively, which resulted from the primary break up of Pangaea at that time. The two primary lineages of Pleurodira, Pan-Pelomedusoides and Pan-Chelidae, can similarly be traced back to the Cretaceous of northern and southern Gondwana, respectively, which were separated from one another by a large desert zone during that time. The primary divergence of crown turtles was therefore driven by vicariance to the primary freshwater aquatic habitat of these lineages. The temporally persistent lineages of basal turtles, Helochelydridae, Meiolaniformes, Sichuanchelyidae, can similarly be traced back to the Late Mesozoic of Euramerica, southern Gondwana, and Asia. Given the ambiguous phylogenetic relationships of these three lineages, it is unclear if their diversification was driven by vicariance as well, or if they display a vicariance-like pattern. The clean, primary signal apparent among early turtles is secondarily obliterated throughout the Late Cretaceous to Recent by extensive dispersal of continental turtles and by multiple invasions of marine habitats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据