4.6 Article

Theoretical Study of the Mechanism of Furfural Conversion on the NiCuCu(111) Surface

期刊

ACS OMEGA
卷 4, 期 17, 页码 17447-17456

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b02237

关键词

-

资金

  1. Shandong Provincial Natural Science Foundation, China [ZR2017MB025]
  2. Natural Science Foundation of Linyi University [LYDX2018BS004]
  3. Undergraduate Training Program for Innovation and Entrepreneurship of Linyi University [S201910452068]

向作者/读者索取更多资源

The full potential energy surface for the hydrodeoxygenation of furfural to furan and other ring-opening products has been systematically investigated using periodic density functional theory including dispersion corrections (PBE-D3) on the bimetallic NiCuCu(111) surface. For furan formation, the most favorable first step is the dehydrogenation of furfural into furoyl (F-CHO + H = F-CO + 2H), the successive step is decarbonylation of furoyl into furanyl (F-CO + H = F + CO + 2H), and the third step of furan formation from the hydrogenation of furanyl (F + CO + 2H = FA + CO + H) is the rate-determining step. In addition, on the basis of the most stably adsorbed furan and H, the ring opening of furan was found to be more favorable for producing many chemicals such as propane, butanal, butanol, and butene. In summary, furan is the main product of furfural conversion on the NiCuCu(111) surface. Since results have been obtained only for the NiCuCu(111) surface constructed by replacing the topmost Cu atoms by Ni atoms, the entire experimentally observed reactivity and selectivity of bimetallic CuNi catalysts for different construction methods cannot be fully rationalized. Nevertheless, the results provide the basis for investigating the intrinsic activity of CuNi catalysts in the hydrodeoxygenation of oxygenates involved in the refining of biomass-derived oils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据