4.7 Article

Micronutrient Status and Selected Physiological Parameters of Roots in Nickel-Exposed Sinapis alba L. Affected by Different Sulphur Levels

期刊

PLANTS-BASEL
卷 8, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/plants8110440

关键词

metal toxicity; sulphur nutrition; stress mitigation; cation exchange capacity; glutathione

资金

  1. statutory funds (OKA/DS/3, Department of Plant Physiology, University of Life Sciences in Lublin) from the Polish Ministry of Science and Higher Education

向作者/读者索取更多资源

An efficient method of improving the micronutrient status of Ni-treated white mustard (Sinapis alba L.) using intensive S-SO4 nutrition was developed. Twelve variants of Hoagland's nutrient solution differing in the concentration of S-SO4 (standard: 2 mM S, and elevated level: 6 or 9 mM S) and Ni (0, 0.0004, 0.04, or 0.08 mM Ni) were tested. The beneficial effect of intensive S nutrition on Ni-stressed plants was manifested by a significant rise in the content of Fe, Mn, and Zn, especially in the shoots. An increase was also found in the shoot B, Cu, and Mo content, whilst there were no changes in their root concentrations. Simultaneously, the shoot Cl concentrations dropped. The elevated level of S in the nutrient solution in general enhanced the translocation of Fe, Cu, Mo, and B in Ni-exposed plants. The beneficial effect of intensive S nutrition on the growth and micronutrient balance of Ni-exposed plants can be at least partially related to the positive changes in root surface properties, especially in cation exchange capacity (CEC). Meanwhile both reduced glutathione (GSH) and phytochelatins (PCs) probably do not significantly contribute to Ni resistance of white mustard under intensive S nutrition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据