4.7 Article

Identification of Superior Alleles for Seedling Stage Salt Tolerance in the USDA Rice Mini-Core Collection

期刊

PLANTS-BASEL
卷 8, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/plants8110472

关键词

rice; salt stress; GWAS; salt tolerance; SNP; abiotic stress

资金

  1. Cuu Long Delta Rice Research Institute (CLRRI), Vietnam

向作者/读者索取更多资源

Salt stress is a major constraint to rice acreage and production worldwide. The purpose of this study was to evaluate the natural genetic variation available in the United States Department of Agriculture (USDA) rice mini-core collection (URMC) for early vigor traits under salt stress and identify quantitative trait loci (QTLs) for seedling-stage salt tolerance via a genome-wide association study (GWAS). Using a hydroponic system, the seedlings of 162 accessions were subjected to electrical conductivity (EC) 6.0 dS m(-1) salt stress at the three-to-four leaf stage. After completion of the study, 59.4% of the accessions were identified as sensitive, 23.9% were identified as moderately tolerant, and 16.7% were identified as highly tolerant. Pokkali was the most tolerant variety, while Nerica-6 was the most sensitive. Adapting standard International Rice Research Institute (IRRI) protocols, eight variables associated with salt tolerance were determined. The GWAS of the URMC, using over three million single-nucleotide polymorphisms (SNPs), identified nine genomic regions associated with salt tolerance that were mapped to five different chromosomes. Of these, none were in the known Saltol QTL region, suggesting different probable genes and mechanisms responsible for salt tolerance in the URMC. The study uncovered genetic loci that explained a large portion of the variation in salt tolerance at the seedling stage. Fourteen highly salt-tolerant accessions, six novel loci, and 16 candidate genes in their vicinity were identified that may be useful in breeding for salt stress tolerance. Identified QTLs can be targeted for fine mapping, candidate gene verification, and marker-assisted breeding in future studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据