4.6 Article

Analysis of Slope Stability in Unsaturated Expansive Soil: A Case Study

期刊

FRONTIERS IN EARTH SCIENCE
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2019.00292

关键词

slope stability; expansive soil; rainfall infiltration; limit equilibrium method; suction

资金

  1. National Key Research and Development Program of China [2018YFC1508601, 2017YFC1501102]
  2. National Natural Science Foundation of China [51909182]
  3. Funds for Double First-Class University Plan for Sichuan University
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

To get a better understanding of failure mechanism of slopes in soils that exhibit expansive characteristics subjected to any type of inundations, particularly, when the soils switch from unsaturated to saturated states, the field study may severe as a rather effective method for providing the most representative information. However, field investigation is usually time-consuming and expensive. While, numerical simulation provides a faster way for producing quantitative interpretation of several complicated mechanisms. In this paper, a field experiment is studied numerically, which involves simulation of water flow within the slope profile by finite element method, followed by quantification of the stability of potential failure mass by the classic slices Method. Special emphasis is placed on the effects of cracks on the flow behavior in the shallow layer, which is one of the most essential characteristics in expansive soils. The Bimodal Soil Water Characteristic curve, together with the Bimodal permeability functions, is found to be more effective in reproducing the change of flow regime (pore water pressure and water content) from the finite element water flow analyses, in comparison to the Unimodal functional properties. The stability analyses illustrate that the shear behavior of soils within the shallow layer should be better described by strength parameters measured under lower confining pressure close to the field conditions. This implies the actual mobilized shear strength of expansive soils in shallow layer should be better modeled with a non-linear strength model that is able to accommodate the low stress conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据