4.6 Article

Optimal electricity cost minimization of a grid-interactive Pumped Hydro Storage using ground water in a dynamic electricity pricing environment

期刊

ENERGY REPORTS
卷 5, 期 -, 页码 159-169

出版社

ELSEVIER
DOI: 10.1016/j.egyr.2019.01.004

关键词

Dynamic pricing; Groundwater; Optimal scheduling; Pumped hydro storage

向作者/读者索取更多资源

The electricity price arbitrage from the utility grid can be a major source of revenue for energy storage systems. In most countries, the electricity price is tightly regulated by their government statutory authority or energy regulator to which obey the different power utility and distribution companies. It is worthwhile analyzing whether energy storage systems, such as Pumped Hydro Storage systems (PHS) using ground water, are economically viable in such a given electricity market, and determining what the benefits are of optimally operating these systems in arbitrage environments for privately owned PHS primarily used for auto-consumption or self-sufficiency. In this paper, an optimal energy control of an 8 kW grid-interactive Pumped Hydro Storage system using ground water in a farming environment is presented. A typical small farming activity within the Mangaung municipality in Bloemfontein, South Africa, is selected as a case study. The aim is to evaluate the potential energy cost saving, achievable using the proposed system. Therefore, the two objectives are to minimize the cost of energy drawn from the utility, while maximizing the energy injected under the Time-of-Use and Feed-in-Tariff schemes. Thereafter, the performance of the developed model to maximize the proposed PHS economic profitability is analyzed through a case study simulated using Matlab. Simulation results show that a potential of 68.44% energy cost saving can be achieved using the proposed system rather than supplying the load demand by the grid exclusively. From the break-even point analysis conducted, it has been revealed that after 2.25 years corresponding to a cost of $7336, the cumulative costs were lower for the proposed system as opposed to the baseline. Furthermore, the payback analysis has shown that the system can be paid off after 5.9 years of operation. (C) 2019 The Author. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据