4.6 Article

Characterization and Transcriptional Regulation of n-Alkane Hydroxylase Gene Cluster of Rhodococcus jostii RHA1

期刊

MICROORGANISMS
卷 7, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/microorganisms7110479

关键词

n-alkane; n-alkane hydroxylase; Rhodococcus; TetR-type transcriptional regulator

资金

  1. Nagaoka University of Technology Presidential Research Grant

向作者/读者索取更多资源

Gram-positive actinomycete Rhodococcus jostii RHA1 is able to grow on C10 to C19 n-alkanes as a sole source of carbon and energy. To clarify, the n-alkane utilization pathway-a cluster of 5 genes (alkBrubA1A2BalkU) which appeared to be involved in n-alkane degradation-was identified and the transcriptional regulation of these genes was characterized. Reverse transcription-PCR analyses revealed that these genes constituted an operon and were transcribed in the presence of n-alkane. Inactivation of alkB led to the absence of the ability to utilize n-undecane. The alkB mutation resulted in reduction of growth rates on C10 and C12 n-alkanes; however, growths on C13 to C19 n-alkanes were not affected by this mutation. These results suggested that alkB was essential for the utilization of C10 to C12 n-alkanes. Inactivation of alkU showed the constitutive expression of alkB. Purified AlkU is able to bind to the putative promoter region of alkB, suggesting that AlkU played a role in repression of the transcription of alk operon. The results of this study indicated that alkB was involved in the medium-chain n-alkanes degradation of strain RHA1 and the transcription of alk operon was negatively regulated by alkU-encoded regulator. This report is important to understand the n-alkane degradation pathway of R. jostii, including the transcriptional regulation of alk gene cluster.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据