4.7 Article

Impact of Plant Growth Promoting Rhizobacteria in the Orchestration of Lycopersicon esculentum Mill. Resistance to Plant Parasitic Nematodes: A Metabolomic Approach to Evaluate Defense Responses Under Field Conditions

期刊

BIOMOLECULES
卷 9, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/biom9110676

关键词

root knot nematodes; biocontrol agents; Lycopersicon esculentum; photosynthetic parameters; oxidative damage; antioxidants; phenolics; osmoprotectants and organic acid profiling

资金

  1. Deanship of Scientific Research at King Saud University [RGP-271]

向作者/读者索取更多资源

The present study deals with biological control of Meloidogyne incognita in 45-days old Lycopersicon esculentum, inoculated with Pseudomonas aeruginosa(M1) and Burkholderia gladioli (M2). The improved plant growth and biomass of nematode infested Plant growth promoting rhizobacteria (PGPR) inoculated plants was observed. Remarkable reduction in the numbers of second stage juvenile (J2s), root galls was recorded after treatment of microbes relative to experimental controls. Moreover, the lowered activities of oxidative stress markers (H2O2 (hydrogen peroxide), O-2(-) (superoxide anion), malondialdehyde (MDA)) was estimated in plants after rhizobacterial supplementation. Higher activities of enzymatic (SOD (Superoxide dismutase), POD (Guaiacol peroxidase), CAT (Catalase), GPOX (Glutathione peroxidase), APOX (Ascorbate peroxidase), GST (Glutathione-S-transferase), GR (Glutathione reductase), DHAR (Dehydroascorbate reductase), PPO (Polyphenol oxidase)) and non-enzymatic (glutathione, ascorbic acid, tocopherol) antioxidants were further determined in nematode infected plants following the addition of bacterial strains. The upregulation of photosynthetic activities were depicted by evaluating plant pigments and gas exchange attributes. An increase in the levels of phenolic compounds (total phenols, flavonoids, anthocyanins), osmoprotectants (total osmolytes, carbohydrates, reducing sugars, trehalose, proline, glycine betaine, free amino acids) and organic acids (fumaric, succinic, citric, malic acid) were reflected in infected plants, showing further enhancement after application of biocontrol agents. The study revealed the understanding of plant metabolism, along with the initiative to commercially exploit the biocontrol agents as an alternative to chemical nematicides in infected fields for sustainable agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据