4.6 Article

Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance

期刊

RESEARCH
卷 2019, 期 -, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.34133/2019/9253132

关键词

-

资金

  1. Basic Science Center Project of NSFC [51788104]
  2. National Key R&D Program of China [2018YFB0703603]

向作者/读者索取更多资源

Thermoelectric materials, which directly convert heat into electricity based on the Seebeck effects, have long been investigated for use in semiconductor refrigeration or waste heat recovery. Among them, SnSe has attracted significant attention due to its promising performance in both p-type and n-type crystals; in particular, a higher out-of-plane ZT value could be achieved in n-type SnSe due to its 3D charge and 2D phonon transports. In this work, the thermoelectric transport properties of n-type polycrystalline SnSe were investigated with an emphasis on the out-of-plane transport through producing textural microstructure. The textures were fabricated using mechanical alloying and repeated spark plasma sintering (SPS), as a kind of hot pressing, aimed at producing strong anisotropic transports in n-type polycrystalline SnSe as that in crystalline SnSe. Results show that the lowest thermal conductivity of 0.36 Wm(-1) K-1 was obtained at 783 K in perpendicular to texture direction. Interestingly, the electrical transport properties are less anisotropic and even nearly isotropic, and the power factors reach 681.3 mu Wm(-1) K-2 at 783 K along both parallel and perpendicular directions. The combination of large isotropic power factor and low anisotropic thermal conductivity leads to a maximum ZT of 1.5 at 783 K. The high performance elucidates the outstanding electrical and thermal transport behaviors in n-type polycrystalline SnSe, and a higher thermoelectric performance can be expected with future optimizing texture in n-type polycrystalline SnSe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据