4.7 Article

Effect of Heat Stress on Bacterial Composition and Metabolism in the Rumen of Lactating Dairy Cows

期刊

ANIMALS
卷 9, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/ani9110925

关键词

rumen; bacterial community; heat stress; dairy cows; metabolism

资金

  1. National Key Research and Development Program [2017YFD0500502]
  2. Scientific Research Project for Major Achievements of the Agricultural Science and Technology Innovation Program [CAAS-ZDXT2019004]
  3. Agricultural Science and Technology Innovation Program [ASTIP-IAS12]
  4. Modern Agro-Industry Technology Research System of PR China [CARS-36]

向作者/读者索取更多资源

Simple Summary: Heat stress negatively impacts the health and milk production of dairy cows, and ruminal microbes play an important role in the animal's milk production. Understanding the link between heat stress and the ruminal microbiome could help to develop strategies to relieve the influence of heat stress by manipulating the ruminal microbial composition. We found that heat-stressed cows had decreased ruminal pH and acetate concentration, whereas the ruminal lactate concentration increased. Heat-stressed cows also had a significantly higher relative abundance of lactate producing bacteria (e.g., Streptococcus and unclassified Enterobacteriaceae), Ruminobacter, Treponema, and unclassified Bacteroidaceae, all of which utilize soluble carbohydrate as an energy source. The relative abundance of the acetate-producing bacterium Acetobacter decreased with heat stress treatment. Therefore, heat stress is associated with changes in ruminal bacterial composition and metabolites, with more lactate and less acetate-producing species in the population, which potentially negatively affects milk production. Abstract: Heat stress negatively impacts the health and milk production of dairy cows, and ruminal microbial populations play an important role in dairy cattle's milk production. Currently there are no available studies that investigate heat stress-associated changes in the rumen microbiome of lactating dairy cattle. Improved understanding of the link between heat stress and the ruminal microbiome may be beneficial in developing strategies for relieving the influence of heat stress on ruminants by manipulating ruminal microbial composition. In this study, we investigated the ruminal bacterial composition and metabolites in heat stressed and non-heat stressed dairy cows. Eighteen lactating dairy cows were divided into two treatment groups, one with heat stress and one without heat stress. Dry matter intake was measured and rumen fluid from all cows in both groups was collected. The bacterial 16S rRNA genes in the ruminal fluid were sequenced, and the rumen pH and the lactate and acetate of the bacterial metabolites were quantified. Heat stress was associated with significantly decreased dry matter intake and milk production. Rumen pH and rumen acetate concentrations were significantly decreased in the heat stressed group, while ruminal lactate concentration increased. The influence of heat stress on the microbial bacterial community structure was minor. However, heat stress was associated with an increase in lactate producing bacteria (e.g., Streptococcus and unclassified Enterobacteriaceae), and with an increase in Ruminobacter, Treponema, and unclassified Bacteroidaceae, all of which utilize soluble carbohydrates as an energy source. The relative abundance of acetate-producing bacterium Acetobacter decreased during heat stress. We concluded that heat stress is associated with changes in ruminal bacterial composition and metabolites, with more lactate and less acetate-producing species in the population, which potentially negatively affects milk production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据