4.8 Article

De novo exploration and self-guided learning of potential-energy surfaces

期刊

NPJ COMPUTATIONAL MATERIALS
卷 5, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41524-019-0236-6

关键词

-

资金

  1. Office of Naval Research through the U.S. Naval Research Laboratory's core basic research program
  2. EPSRC [EP/P022596/1, EP/L014742/1]
  3. Leverhulme Early Career Fellowship
  4. Isaac Newton Trust
  5. EPSRC [EP/P022596/1] Funding Source: UKRI

向作者/读者索取更多资源

Interatomic potential models based on machine learning (ML) are rapidly developing as tools for material simulations. However, because of their flexibility, they require large fitting databases that are normally created with substantial manual selection and tuning of reference configurations. Here, we show that ML potentials can be built in a largely automated fashion, exploring and fitting potential-energy surfaces from the beginning (de novo) within one and the same protocol. The key enabling step is the use of a configuration-averaged kernel metric that allows one to select the few most relevant and diverse structures at each step. The resulting potentials are accurate and robust for the wide range of configurations that occur during structure searching, despite only requiring a relatively small number of single-point DFT calculations on small unit cells. We apply the method to materials with diverse chemical nature and coordination environments, marking an important step toward the more routine application of ML potentials in physics, chemistry, and materials science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据