4.8 Article

Decoding crystallography from high-resolution electron imaging and diffraction datasets with deep learning

期刊

SCIENCE ADVANCES
卷 5, 期 10, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaw1949

关键词

-

资金

  1. INL Laboratory Directed Research and Development (LDRD) Program under DOE Idaho Operations Office [DE-AC07-05ID145142]

向作者/读者索取更多资源

While machine learning has been making enormous strides in many technical areas, it is still massively underused in transmission electron microscopy. To address this, a convolutional neural network model was developed for reliable classification of crystal structures from small numbers of electron images and diffraction patterns with no preferred orientation. Diffraction data containing 571,340 individual crystals divided among seven families, 32 genera, and 230 space groups were used to train the network. Despite the highly imbalanced dataset, the network narrows down the space groups to the top two with over 70% confidence in the worst case and up to 95% in the common cases. As examples, we benchmarked against alloys to two-dimensional materials to cross-validate our deep-learning model against high-resolution transmission electron images and diffraction patterns. We present this result both as a research tool and deep-learning application for diffraction analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据