4.8 Article

Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films

期刊

SCIENCE ADVANCES
卷 5, 期 10, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaw6619

关键词

-

资金

  1. Sao Paulo Research Foundation (FAPESP) [2017/12582-5]
  2. FAPESP [2017/11986-5]
  3. Shell
  4. ANP (Brazil's National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation
  5. Swiss National Science Foundation [200020_169695]
  6. Swiss National Science Foundation (SNF) [200020_169695] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Lead-based organic-inorganic hybrid perovskite (OIHP) solar cells can attain efficiencies over 20%. However, the impact of ion mobility and/or organic depletion, structural changes, and segregation under operating conditions urge for decisive and more accurate investigations. Hence, the development of analytical tools for accessing the grain-to-grain OIHP chemistry is of great relevance. Here, we used synchrotron infrared nanospectroscopy (nano-FTIR) to map individual nanograins in OIHP films. Our results reveal a spatial heterogeneity of the vibrational activity associated to the nanoscale chemical diversity of isolated grains. It was possible to map the chemistry of individual grains in CsFAMA [Cs(0.05)FA(0.79)MA(0.16)Pb(I0.83Br0.17)(3)] and FAMA [FA(0.83)MA(0.17)Pb(I0.83Br0.17)(3)] films, with information on their local composition. Nanograins with stronger nano-FTIR activity in CsFAMA and FAMA films can be assigned to PbI2 and hexagonal polytype phases, respectively. The analysis herein can be extended to any OIHP films where organic cation depletion/accumulation can be used as a chemical label to study composition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据