4.7 Article

Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors

期刊

MATERIALS & DESIGN
卷 182, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2019.108048

关键词

Green; Binder-free; Oxygen-doped; Macro-/meso-/microporous

资金

  1. National Natural Science Foundation of China [51661145025, 11274055, 61520106013]

向作者/读者索取更多资源

Three-dimensional porous scaffolds doped with the heteroatoms show excellent performances in energy conversion and storage. Herein, we report a green synthesis approach to construct the oxygen-doped porous carbon electrodes by carbonizing the oxygen-rich biomass material, sodium alginate. By precisely controlling the carbonization temperature and increasing the mole ratio of alpha-L-guluronic acid units/beta-D-mannuronic acid units in sodium alginate, the morphology, oxygen content and electrical conductivity of the as-obtained carbonaceous electrode are well balanced. This electrode material delivers capacitance of up to 424.6 F g(-1) in 6 M potassium hydroxide (KOH) electrolyte at 1 A g(-1), and good cyclic stability with the capacitance retention of >90% after 20,000 charge-discharge cycles. Such excellent electrochemical performance can be attributed to both the unique hierarchical macro-/meso-/microporous structure and the presence of abundant oxygen-containing functional groups in the as-prepared carbonized sodium alginate aerogels. The capacitance of our oxygen-doped porous carbon electrodes is at least twice greater than those of other carbonaceous electrodes produced from biomass precursors reported in literatures. This work provides a facile, effective and environmental-friendly approach for the fabrication of high-performance heteroatom-doped carbon-based electrodes for supercapacitor applications. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据