4.7 Article

Hybrid CaCO3-mucin crystals: Effective approach for loading and controlled release of cationic drugs

期刊

MATERIALS & DESIGN
卷 182, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2019.108020

关键词

Vaterite; Co-synthesis; Doxorubicin; Aprotinin; Prolonged release; Mucosal delivery

资金

  1. M.V. Lomonosov Moscow State University [AAAA-A16-116052010081-5]
  2. M.V. Lomonosov Moscow State University Program of Development
  3. Europeans Union's Horizon 2020 research and innovation programme (Marie-Curie Individual Fellowship) [LIGHTOPLEX-747245]
  4. Nottingham Trent University

向作者/读者索取更多资源

Vaterite CaCO3 crystals are actively used as a biocompatible and degradable matrix for encapsulation of fragile biomacromolecules. However, the incorporation of small cationic drugs into the crystals remains awkward due to a poor binding of these drugs to the crystal surface and scarce retention inside the crystal pores. Herein, we achieve efficient drug loading and control over drug release performance via utilisation of hybrid CaCO3 crystals impregnated with mucin. The co-loading of mucin and anticancer drug doxorubicin (DOX) into CaCO3 crystals enhanced drug content in the crystals by ca 12 times giving DOX concentration of 1.3 mg g(-1) CaCO3. Retention of DOX inside hybrid crystals is governed by strong electrostatic attraction to mucin matrix and significant narrowing of the crystal pores in the presence of mucin. At physiologically relevant conditions, DOX release kinetics strongly depends on the reciystallization of the porous vaterite to non-porous calcite that is regulated by mucin concentration. We believe that this study will help to design novel effective drug delivery systems able to load high amounts of drugs at mild conditions for sustained and controlled release of the drugs. This is indispensable for mucosal delivery where mucin produced by epithelial tissues is a main component. (C) 2019 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据