4.7 Article

Synthesizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconducting qubits

期刊

NPJ QUANTUM INFORMATION
卷 5, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41534-019-0219-y

关键词

-

资金

  1. Netherlands Organisation for Scientific Research (NWO/OCW)

向作者/读者索取更多资源

Massive mechanical resonators operating at the quantum scale can enable a large variety of applications in quantum technologies as well as fundamental tests of quantum theory. Of crucial importance in that direction is both their integrability into state-of-the-art quantum platforms as well as the ability to prepare them in generic quantum states using well-controlled high-fidelity operations. Here, we propose a scheme for controlling a radio-frequency mechanical resonator at the quantum scale using two superconducting transmon qubits that can be integrated on the same chip. Specifically, we consider two qubits coupled via a capacitor in parallel to a superconducting quantum interference device (SQUID), which has a suspended mechanical beam embedded in one of its arms. Following a theoretical analysis of the quantum system, we find that this configuration, in combination with an in-plane magnetic field, can give rise to a tuneable three-body interaction in the single-photon strong-coupling regime, while enabling suppression of the stray qubit-qubit coupling. Using state-of-the-art parameters and qubit operations at single-excitation levels, we numerically demonstrate the possibility of ground-state cooling as well as high-fidelity preparation of mechanical quantum states and qubit-phonon entanglement, i.e. states having negative Wigner functions and obeying non-classical correlations. Our work significantly extends the quantum control toolbox of radio-frequency mechanical resonators and may serve as a promising architecture for integrating such mechanical elements with transmon-based quantum processors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据