4.7 Article

Nonlinear ultrafast fiber amplifiers beyond the gain-narrowing limit

期刊

OPTICA
卷 6, 期 10, 页码 1321-1326

出版社

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.6.001328

关键词

-

类别

资金

  1. National Institutes of Health [EB002019]

向作者/读者索取更多资源

Ultrafast lasers are becoming increasingly widespread in science and industry alike. Fiber-based ultrafast laser sources are especially attractive because of their compactness, alignment-free setups, and potentially low cost. However, confining short pulses within a fiber core leads to high intensities, which drives a host of nonlinear effects. While these phenomena and their interactions greatly complicate the design of such systems, they can also provide opportunities for engineering new capabilities. Here, we report a new fiber amplification regime distinguished by the use of a dynamically evolving gain spectrum as a degree of freedom: as a pulse experiences nonlinear spectral broadening, absorption and amplification actively reshape both the pulse and the gain spectrum itself. The dynamic co-evolution of the field and excited-state populations supports pulses that can broaden spectrally by almost two orders of magnitude and well beyond the gain bandwidth, while remaining cleanly compressible to their sub-50-fs transform limit. Theory and experiments provide evidence that a nonlinear attractor underlies the management of the nonlinearity by the gain. Further research into these mutual, pulse-inversion propagation dynamics may address open scientific questions and pave the way toward simple, compact fiber sources that produce high-energy, sub-30-fs pulses. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据