4.5 Article

Testing Different Interpolation Methods Based on Single Beam Echosounder River Surveying. Case Study: Siret River

出版社

MDPI
DOI: 10.3390/ijgi8110507

关键词

interpolation; river bathymetry; single-beam echosounder; river cross-section; Siret River

资金

  1. European Social Fund, through The Human Capital Operational Programme 2014-2020 (POCU), Romania [POCU/380/6/13]

向作者/读者索取更多资源

Bathymetric measurements play an important role in assessing the sedimentation rate, deposition of pollutants, erosion rate, or monitoring of morphological changes in a river, lake, or accumulation basin. In order to create a coherent and continuous digital elevation model (DEM) of a river bed, various data interpolation methods are used, especially when single-beam bathymetric measurements do not cover the entire area and when there are areas which are not measured. Interpolation methods are based on numerical models applied to natural landscapes (e.g., meandering river) by taking into account various morphometric and morphologies and a wide range of scales. Obviously, each interpolation method, used in standard or customised form, yields different results. This study aims at testing four interpolation methods in order to determine the most appropriate method which will give an accurate description of the riverbed, based on single-beam bathymetric measurements. The four interpolation methods selected in the present research are: inverse distance weighting (IDW), radial basis function (RBF) with completely regularized spline (CRS) which uses deterministic interpolation, simple kriging (KRG) which is a geo-statistical method, and Topo to Raster (TopoR), a particular method specifically designed for creating continuous surfaces from various elevation points, contour, or polygon data, suitable for creating surfaces for hydrologic analysis. Digital elevation models (DEM's) were statistically analyzed and precision and errors were evaluated. The single-beam bathymetric measurements were made on the Siret River, between 0 and 35 km. To check and validate the methods, the experiment was repeated for five randomly selected cross-sections in a 1500 m section of the river. The results were then compared with the data extracted from each elevation model generated with each of the four interpolation methods. Our results show that: 1) TopoR is the most accurate technique, and 2) the two deterministic methods give large errors in bank areas, for the entire river channel and for the particular cross-sections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据