4.6 Article

Implementation of a methodology for determining elastic properties of lipid assemblies from molecular dynamics simulations

期刊

BMC BIOINFORMATICS
卷 17, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-016-1003-z

关键词

Bending rigidity; Lipid tilt and splay; Helfrich theory of elasticity; Tilt modulus; Splay modulus

资金

  1. HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational Biomedicine at Weill Medical College of Cornell University
  2. Minerva Foundation, Munich, Germany

向作者/读者索取更多资源

Background: The importance of the material properties of membranes for diverse cellular processes is well established. Notably, the elastic properties of the membrane, which depend on its composition, can directly influence membrane reshaping and fusion processes as well as the organisation and function of membrane proteins. Determining these properties is therefore key for a mechanistic understanding of how the cell functions. Results: We have developed a method to determine the bending rigidity and tilt modulus, for lipidic assemblies of arbitrary lipid composition and shape, from molecular dynamics simulations. The method extracts the elastic moduli from the distributions of microscopic tilts and splays of the lipid components. We present here an open source implementation of the method as a set of Python modules using the computational framework OpenStructure. These modules offer diverse algorithms typically used in the calculatation the elastic moduli, including routines to align MD trajectories of complex lipidic systems, to determine the water/lipid interface, to calculate lipid tilts and splays, as well as to fit the corresponding distributions to extract the elastic properties. We detail the implementation of the method and give several examples of how to use the modules in specific cases. Conclusions: The method presented here is, to our knowledge, the only available computational approach allowing to quantify the elastic properties of lipidic assemblies of arbitrary shape and composition (including lipid mixtures). The implementation as python modules offers flexibility, which has already allowed the method to be applied to diverse lipid assembly types, ranging from bilayers in the liquid ordered and disordered phases to a study of the inverted-hexagonal phase, and with different force-fields (both all-atom and coarse grained representations). The modules are freely available through GitHub at https://github.com/njohner/ost_pymodules/ while OpenStructure can be obtained at http://www.openstructure.org.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据