4.6 Article

A Flutter-Based Electromagnetic Wind Energy Harvester: Theory and Experiments

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/app9224823

关键词

flutter based wind energy harvester; analytical model; critical wind speed

资金

  1. National Natural Science Foundation of China [61604023]

向作者/读者索取更多资源

Wind energy harvesting is a promising way to offer power supply to low-power electronic devices. Miniature wind-induced vibration energy harvesters, which are currently being focused on by researchers in the field, offer the advantages of small volume and simple structure. In this article, an analytical model was proposed for the kinetic analysis of a flutter-based electromagnetic wind energy harvester. As a result, the critical wind speeds of energy harvesters with different magnet positions were predicted. To experimentally verify the analytical predictions and investigate the output performance of the proposed energy harvester, a small wind tunnel was built. The critical wind speeds measured by the experiment were found to be consistent with the predictions. Therefore, the proposed model can be used to predict the critical wind speed of a wind belt type energy harvester. The experimental results also show that placing the magnets near the middle of the membrane can result in lower critical wind speed and higher output performance. The optimized wind energy harvester was found to generate maximum average power of 705 mu W at a wind speed of 10 m/s, offering application prospects for the power supply of low-power electronic devices. This work can serve as a reference for the structural design and theoretical analysis of a flutter-based wind energy harvester.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据