4.7 Article

Inorganic halide perovskite materials and solar cells

期刊

APL MATERIALS
卷 7, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5117306

关键词

-

资金

  1. National Key Research and Development Program of China [2018YFB1500103]
  2. Advanced Talents Program of Hebei Province [GCC2014013]
  3. High Level University Funding of China

向作者/读者索取更多资源

Organic-inorganic perovskite solar cells (PSCs) have achieved an inspiring third-party-certificated power conversion efficiency (PCE) of 25.2%, which is comparable with commercialized silicon (Si) and copper indium gallium selenium solar cells. However, their notorious instability, including their deterioration at elevated temperature, is still a serious issue in commercial applications. This thermal instability can be ascribed to the high volatility and reactivity of organic compounds. As a result, solar cells based on inorganic perovskite materials have drawn tremendous attention, owing to their excellent stability against thermal stress. In the last few years, PSCs based on inorganic perovskite materials have seen an astonishing development. In particular, CsPbI3 and CsPbI2Br PSCs demonstrated outstanding PCEs, exceeding 18% and 16%, respectively. In this review, we systematically discuss the properties of inorganic perovskite materials and the device configuration of inorganic PSCs as well as review the progress in PCE and stability. Encouragingly, all-inorganic PSCs, in which all functional layers are inorganic, provide a feasible approach to overcome the thermal instability issue of traditional organic-inorganic PSCs, leading to new perspectives toward commercial production of PSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据