4.6 Article

Dysprosium Iron Garnet Thin Films with Perpendicular Magnetic Anisotropy on Silicon

期刊

ADVANCED ELECTRONIC MATERIALS
卷 6, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.201900820

关键词

magnetic insulators; oxides; silicon; spintronics

资金

  1. SMART, a Center of nCORE - SRC
  2. NIST
  3. NSF DMR [1808190]
  4. MRSEC Program of the National Science Foundation [DMR -1419807]
  5. DARPA [HR0011834375]
  6. NSF through the MRSEC program
  7. Direct For Mathematical & Physical Scien
  8. Division Of Materials Research [1808190] Funding Source: National Science Foundation

向作者/读者索取更多资源

Magnetic insulators, such as the rare-earth iron garnets, are promising materials for energy-efficient spintronic memory and logic devices, and their anisotropy, magnetization, and other properties can be tuned over a wide range through selection of the rare-earth ion. Films are typically grown as epitaxial single crystals on garnet substrates, but integration of these materials with conventional electronic devices requires growth on Si. The growth, magnetic, and spin transport properties of polycrystalline films of dysprosium iron garnet (DyIG) with perpendicular magnetic anisotropy (PMA) on Si substrates and as single crystal films on garnet substrates are reported. PMA originates from magnetoelastic anisotropy and is obtained by controlling the strain state of the film through lattice mismatch or thermal expansion mismatch with the substrates. DyIG/Si exhibits large grain sizes and bulk-like magnetization and compensation temperature. Polarized neutron reflectometry demonstrates a small interfacial nonmagnetic region near the substrate. Spin Hall magnetoresistance measurements conducted on a Pt/DyIG/Si heterostructure demonstrate a large interfacial spin mixing conductance between the Pt and DyIG comparable to other garnet/Pt heterostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据