4.5 Article

Environment-assisted Quantum-enhanced Sensing with Electronic Spins in Diamond

期刊

PHYSICAL REVIEW APPLIED
卷 12, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.12.044047

关键词

-

资金

  1. NSF [PHY1415345, EECS1702716]
  2. Fulbright Program
  3. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

The performance of solid-state quantum sensors based on electronic spin defects is often limited by the presence of environmental spin impurities that cause decoherence. A promising approach to improve these quantum sensors is to convert environment spins into useful resources for sensing, in particular, entangled states. However, the sensitivity enhancement that can be achieved from entangled states is limited by experimental constraints, such as control errors, decoherence, and time overheads. Here we experimentally demonstrate the efficient use of an unknown electronic spin defect in the proximity of a nitrogen-vacancy center in diamond to achieve both an entangled quantum sensor and a quantum memory for readout. We show that, whereas entanglement alone does not provide an enhancement in sensitivity, combining both entanglement and repetitive readout achieves an enhancement in performance over the use of a single-spin sensor, and more broadly we discuss regimes where sensitivity could be enhanced. Our results critically highlight the challenges in improving quantum sensors using entangled states of electronic spins, while providing an important benchmark in the quest for entanglement-assisted metrology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据