4.7 Article

Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cells

期刊

NANOMATERIALS
卷 9, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/nano9111627

关键词

organometallic halide perovskite; polymeric hole transporters; starch composite; solar cells; interfaces

向作者/读者索取更多资源

The performances of organometallic halide perovskite-based solar cells severely depend on the device architecture and the interface between each layer included in the device stack. In particular, the interface between the charge transporting layer and the perovskite film is crucial, since it represents both the substrate where the perovskite polycrystalline film grows, thus directly influencing the active layer morphology, and an important site for electrical charge extraction and/or recombination. Here, we focus on engineering the interface between a perovskite-polymer nanocomposite, recently developed by our group, and different commonly employed polymeric hole transporters, namely PEDOT: PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], PEDOT, PTAA [poly(bis 4-phenyl}{2,4,6-trimethylphenyl}amine)], Poly-TPD [Poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] Poly-TPD, in inverted planar perovskite solar cell architecture. The results show that when Poly-TPD is used as the hole transfer material, perovskite film morphology improved, suggesting an improvement in the interface between Poly-TPD and perovskite active layer. We additionally investigate the effect of the Molecular Weight (MW) of Poly-TPD on the performance of perovskite solar cells. By increasing the MW, the photovoltaic performances of the cells are enhanced, reaching power conversion efficiency as high as 16.3%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据