4.7 Article

MOF-Derived Co3O4 Polyhedrons as Efficient Polysulfides Barrier on Polyimide Separators for High Temperature Lithium-Sulfur Batteries

期刊

NANOMATERIALS
卷 9, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/nano9111574

关键词

energy storage systems; lithium sulfur batteries; functional separators; high temperature operation; polyimide

资金

  1. National Natural Science Foundation of China [51774251]
  2. Hebei Natural Science Foundation for Distinguished Young Scholars [B2017203313]
  3. Hundred Excellent Innovative Talents Support Program in Hebei Province [SLRC2017057]
  4. Talent Engineering Training Funds of Hebei Province [A201802001]
  5. opening project of the state key laboratory of Advanced Chemical Power Sources [SKL-ACPS-C-11]

向作者/读者索取更多资源

The incorporation of highly polarized inorganic compounds in functional separators is expected to alleviate the high temperature safety- and performance-related issues for promising lithium-sulfur batteries. In this work, a unique Co3O4 polyhedral coating on thermal-stable polyimide (PI) separators was developed by a simple one-step low-temperature calcination method utilizing metal-organic framework (MOF) of Co-based zeolitic-imidazolate frameworks (ZIF-Co) precursors. The unique Co3O4 polyhedral structures possess several structural merits including small primary particle size, large pore size, rich grain boundary, and high ionic conductivity, which endow the ability to adequately adsorb dissolved polysulfides. The flexible-rigid lithium-lanthanum-zirconium oxide-poly(ethylene oxide) (LLZO-PEO) coating has been designed on another side of the polyimide non-woven membranes to inhibit the growth of lithium dendrites. As a result, the as-fabricated Co3O4/polyimide/LLZO-PEO (Co3O4/PI/LLZO) composite separators displayed fair dimensional stability, good mechanical strength, flame retardant properties, and excellent ionic conductivity. More encouragingly, the separator coating of Co3O4 polyhedrons endows Li-S cells with unprecedented high temperature properties (tested at 80 degrees C), including rate performance 620 mAh g(-1) at 4.0 C and cycling stability of 800 mAh g(-1) after 200 cycles-much better than the state-of-the-art results. This work will encourage more research on the separator engineering for high temperature operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据