4.6 Article

Cloning, Characterization and Functional Analysis of the LtuPTOX Gene, a Homologue of Arabidopsis thaliana IMMUTANS Derived from Liriodendron tulipifera

期刊

GENES
卷 10, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/genes10110878

关键词

L. tulipifera; tepal; carotenoid biosynthesis; LtuPTOX; functional analysis

资金

  1. National Natural Science Foundation of China [31770718, 31470660]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

Flower colour and colour patterns are crucial traits for ornamental species; thus, a comprehensive understanding of their genetic basis is extremely significant for plant breeders. The tulip tree (Liriodendron tulipifera Linn.) is well known for its flowers, odd leave shape and tree form. However, the genetic basis of its colour inheritance remains unknown. In this study, a putative plastid terminal oxidase gene (LtuPTOX) was identified from L. tulipifera based on multiple databases of differentially expressed genes at various developmental stages. Then, the full-length cDNA of LtuPTOX was derived from tepals and leaves using RACE (rapid amplification of cDNA ends) approaches. Furthermore, gene structure and phylogenetic analyses of PTOX as well as AOXs (alternative oxidases), another highly similar homologue in the AOX family, were used to distinguish between the two subfamilies of genes. In addition, transient transformation and qPCR methods were used to determine the subcellular localization and tissue expression pattern of the LtuPTOX gene. Moreover, the expression of LtuPTOX as well as pigment contents was investigated to illustrate the function of this gene during the formation of orange bands on petals. The results showed that the LtuPTOX gene encodes a 358-aa protein that contains a complete AOX domain (PF01786). Accordingly, the LiriodendronPTOX and AOX genes were identified as only paralogs since they were rather similar in sequence. LtuPTOX showed chloroplast localization and was expressed in coloured organs such as petals and leaves. Additionally, an increasing pattern of LtuPTOX transcripts leads to carotenoid accumulation on the orange-band during flower bud development. Taken together, our results suggest that LtuPTOX is involved in petal carotenoid metabolism and orange band formation in L. tulipifera. The identification of this potentially involved gene will lay a foundation for further uncovering the genetic basis of flower colour in L. tulipifera.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据