4.5 Article

Molecular and Mechanical Causes of Microtubule Catastrophe and Aging

期刊

BIOPHYSICAL JOURNAL
卷 109, 期 12, 页码 2574-2591

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2015.10.048

关键词

-

资金

  1. National Institutes of Health [GM-R01098389]
  2. Presidium of the Russian Academy of Sciences program
  3. Supercomputing Center of Lomonosov Moscow State University
  4. American Cancer Society [RSG-14-018-01-CCG]
  5. Dynasty Foundation Fellowship
  6. RF President's grant

向作者/读者索取更多资源

Tubulin polymers, microtubules, can switch abruptly from the assembly to shortening. These infrequent transitions, termed catastrophes, affect numerous cellular processes but the underlying mechanisms are elusive. We approached this complex stochastic system using advanced coarse-grained molecular dynamics modeling of tubulin-tubulin interactions. Unlike in previous simplified models of dynamic microtubules, the catastrophes in this model arise owing to fluctuations in the composition and conformation of a growing microtubule tip, most notably in the number of protofilament curls. In our model, dynamic evolution of the stochastic microtubule tip configurations over a long timescale, known as the system's aging, gives rise to the nonexponential distribution of microtubule lifetimes, consistent with experiment. We show that aging takes place in the absence of visible changes in the microtubule wall or tip, as this complex molecular-mechanical system evolves slowly and asymptotically toward the steady-state level of the catastrophe-promoting configurations. This new, to our knowledge, theoretical basis will assist detailed mechanistic investigations of the mechanisms of action of different microtubule-binding proteins and drugs, thereby enabling accurate control over the microtubule dynamics to treat various pathologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据