4.8 Article

High performance perovskites solar cells by hybrid perovskites co-crystallized with poly(ethylene oxide)

期刊

NANO ENERGY
卷 67, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.104229

关键词

Hybrid perovskite; poly(ethylene oxide); Hydrogen bonding; Photocurrent hysteresis; Power conversion efficiency; Stability

资金

  1. Air Force Office of Scientific Research (Organic Materials Chemistry Program) [FA9550-15-1-0292]
  2. National Science Foundation [EECS 1351785, EECS 1903303]
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

Hybrid perovskite materials have emerged as attractive alternatives for cost-effective solar cells in the past ten years. However, achieving hysteresis-free, stable and efficient solution-processed perovskites solar cells has remained as a significant fundamental challenge. In this study, we report a strategy that utilizes poly (ethylene oxide) to sequester the counter ions in the perovskite lattices to suppress the formation of point defects, reduce the migration of ions/vacancy and to facilitate crystal growth in a more thermodynamically preferred orientation. Systematical investigations indicate that poly (ethylene oxide) indeed form hydrogen bonds with perovskite, which reduces the formation of kinetically-driven point defects, minimize charge carrier recombination and sharpen the density of states distribution. As a result, un-encapsulated solution-processed perovskite solar cells exhibit stabilized power conversion efficiency with hysteresis-free characteristics and significantly improved ambient shelf- and thermal-stability at relative high humidity, in comparison to the reference devices that exhibit unstable power conversion efficiency with dramatically higher hysteresis factor and poorer device lifetime. Our studies demonstrate that development of hybrid perovskite materials co-crystallized with polymers is an efficient approach towards high performance perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据