4.8 Article

Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in Internet of Things and self-powered wind speed sensor

期刊

NANO ENERGY
卷 68, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.104319

关键词

Triboelectric; Electromagnetic; Hybrid nanogenerator; Wind energy; Wireless monitoring system; Wind speed sensor

资金

  1. National Natural Science Foundation of China [51605449, 51975541, 51975542]
  2. China Postdoctoral Science Foundation [2017M621111, 2018T110207]
  3. Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi
  4. National Defense Pre-Research Foundation of China [61406190504, 61406190202]
  5. National Key R&D Program of China [2018YFF0300605, 2019YFF0301802]
  6. Shanxi 1331 Project Key Subject Construction [1331KSC]
  7. Innovative Research Group Project of National Natural Science Foundation of China [51821003]

向作者/读者索取更多资源

In recent years, as the world has been warming, frequent natural disasters are posing a great threat to humans. By combining 5G technology with the Internet of Things (IoT) concept and increasing the placement of wireless sensor networks, disaster-prone points can be closely monitored. However, regular replacement of the traditional chemical batteries for devices that are a part of the developing IoT remains a significant challenge, especially in remote areas. In this article, we propose and report a hybrid energy harvester used in wind energy harvesting. The device consists of a rotating body and a sliding body. The electromagnetic generators (EMGs) in the rotating body and the triboelectric nanogenerators (TENGs) on the sliding body form the entirety of the power generating mechanism, and all generated units are completely sealed in the device box, which is isolated from the harsh environment. This paper not only systematically studies the influence of dielectric material types and sizes on the output performance of TENGs, but also studies the output performance of this device under different wind speeds. The results show that when the wind speed is not less than 4 m/s, the energy harvester can convert wind energy into electricity. The output performance of TENGs and EMGs increases with increasing wind speed, and the voltages of the TENG and the EMG are 416 V and 63.2 V at the 15 m/s wind speed, respectively. When the wind speed is 9 m/s, the maximum output power of TENG and EMG are 0.36 mW and 18.6 mW, respectively. The device can charge a capacitor of 1000 mu F to 19.8 V in 30s. By supplying power to electronic devices and wireless monitoring systems including temperature sensors and humidity sensors, it is shown that the creation and implementation of such an energy harvester is practical and has a significant impact on promoting the development of IoT. Meanwhile, it can be used as a self-powered sensor to detected wind speed by analyzing the frequency of TENG output voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据