4.8 Article

Heterostructured MXene and g-C3N4 for high-rate lithium intercalation

期刊

NANO ENERGY
卷 65, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.104030

关键词

Intercalation pseudocapacitance; 2D heterostructure; Electronic structure

资金

  1. King Abdullah University of Science and Technology (KAUST)

向作者/读者索取更多资源

A critical limitation to conventional electrochemical double-layer capacitors is their low energy densities. This has triggered significant interest in developing new pseudocapacitive materials, which utilize faradaic mechanisms to increase their energy densities. In this work, graphitic carbon nitride (g-C3N4) and Ti3C2Tx MXene are hybridized to form a unique two-dimensional (2D) heterostructure, which delivers remarkable pseudocapacitive characteristics and robust stability towards lithium storage. Interestingly, the improved kinetics is reflected by insignificant influence of (dis)charge rates on the pseudocapacitance even when testing at a 120C rate, and small peak potential offsets at high scan rates, revealing that there are no significant diffusion limitations in the heterostructure. This unexpected fast kinetics is related to the intrinsic chemical and electronic coupling effects between g-C3N4 and MXene, which can synergistically improve both electron transfer and lithium diffusion kinetics compared to MXene itself.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据