4.5 Article

A Combination of Actin Treadmilling and Cross-Linking Drives Contraction of Random Actomyosin Arrays

期刊

BIOPHYSICAL JOURNAL
卷 109, 期 9, 页码 1818-1829

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2015.09.013

关键词

-

资金

  1. National Institutes of Health [GM068952]
  2. Erwin Schrodinger Fellowship of the Austrian Science Fund [J3463-N25]
  3. Austrian Science Fund (FWF) [J3463] Funding Source: Austrian Science Fund (FWF)
  4. Austrian Science Fund (FWF) [J 3463] Funding Source: researchfish

向作者/读者索取更多资源

We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据