4.6 Article

Highly efficient production of 2,5-dihydroxymethylfuran from biomass-derived 5-hydroxymethylfurfural over an amorphous and mesoporous zirconium phosphonate catalyst

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 37, 期 -, 页码 82-92

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2018.12.001

关键词

5-Hydroxymethylfurfural; 2,5-Dihydroxymethylfuran; 2-Butanol; Zirconium phosphonate catalyst; Meerwein-Ponndorf-Verley reduction

资金

  1. National Natural Science Foundation of China [21506071]
  2. Special Foundation of Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection [HSXT2-316]

向作者/读者索取更多资源

The development of high-efficiency and low-cost catalysts is very crucial for the Meerwein-Ponndorf-Verley (MPV) reduction of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF). In this work, an amorphous and mesoporous zirconium phosphonate catalyst (Zr-DTMP), which is a zirconium-containing organic-inorganic nanohybrid, was successfully designed and synthesized by the simple assembly of zirconium tetrachloride (ZrCl4) and diethylene triaminepenta(methylene phosphonic acid) (DTMP). Satisfactorily, when Zr-DTMP was employed for the MPV reduction of HMF in the presence of 2-butanol (secBuOH), DHMF yield could be achieved as 96.5% in 3 h under a relatively mild reaction temperature of 140 degrees C. Systematic investigations indicated that this high catalytic activity should be mainly due to the cooperative role of enhancive Lewis acid site (Zr4+) and Lewis base site (O2-) in activating the carbonyl group of HMF and dissociating the hydroxyl group of secBuOH, respectively. Additionally, Zr-DTMP showed excellent catalytic stability, when it was successively used 5 recycles, its surface characteristics and textural properties still remained almost unchanged, and so, the catalytic activity was not obviously affected. More interestingly, Zr-DTMP could also be applied for the selective reduction of other biomass-derived carbonyl compounds, such as 5-methylfurfural (MF), furfural (FF), levulinic acid (LA), ethyl levulinate (EL) and cyclohexanone (CHN), into the corresponding products with high yields, which is beneficial to the effective synthesis of various valuable bio-based chemicals. (C) 2018 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据