4.7 Article

Over-Expression of ERF38 Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar

期刊

FRONTIERS IN PLANT SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2019.01375

关键词

poplar; ERF38 gene; salt and osmotic tolerance; gene expression; genetic transformation

资金

  1. Fundamental Research Funds for the Central Universities [2572018CL03]
  2. National Natural Science Foundation of China [31570659]
  3. 111 Project [B16010]
  4. Natural Science Foundation of Jiangsu Province [BK20190748]

向作者/读者索取更多资源

Ethylene response factor (ERF) gene family plays an important role in abiotic stress responses. In this study, we isolated a salt-inducible ERF gene, ERF38 (Potri.006G138900.1), from the 84K poplar (Populus alba x Populus glandulosa) and investigated its functions in salt and osmotic tolerance. We identified that ERF38 protein was targeted to nucleus and had no self-activation. Results from yeast-one-hybrid indicated that the ERF38 protein can specifically bind to the dehydration responsive element (DRE). We then successfully transferred the ERF38 gene into the 84K poplar. Under respective salt and polyethylene glycol (PEG)-6000 stresses, four of the physiological traits, including peroxidase (POD) and superoxide dismutase (SOD) activities, soluble protein content, and proline content, increased significantly in the transgenic plants, compared to the wild type. Regarding the other two parameters, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, their increments in the transgenic lines under the stresses, which were compared to the water control, were significantly low than that of the wild type. In addition, reactive oxygen species (ROS) are scavenged in the transgenic lines under the stresses, but not in the wild type (WT). Interestingly, when challenged with the stresses, expression levels of a few genes associated with POD and SOD metabolism were significantly increased in the transgenic poplars. In all, evidence from morphological, physiological, and biochemical analyses indicated that over-expression of ERF38 gene can improve salt and osmotic tolerance in the transgenic poplar.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据