4.6 Article

Drivers of Bacterial α- and β-Diversity Patterns and Functioning in Subsurface Hadal Sediments

期刊

FRONTIERS IN MICROBIOLOGY
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2019.02609

关键词

hadal trench biosphere; subsurface sediments; bacteria; viruses; sediment geochemistry; bacterial biodiversity; organic matter cycling

资金

  1. EU project MIDAS EU FPVII [603418, 30070015]
  2. Japan Society for the Promotion of Science (JSPS)

向作者/读者索取更多资源

Oceanic trenches at hadal (>6,000 m) depths are hot spots of organic matter deposition and mineralization and can host abundant and active bacterial assemblages. However, the factors able to shape their biodiversity and functioning remain largely unexplored, especially in subsurface sediments. Here, we investigated the patterns and drivers of benthic bacterial alpha- and beta-diversity (i.e., OTU richness and turnover diversity) along the vertical profile down to 1.5 m sediment depth in the Izu-Bonin Trench (at similar to 10,000 m water depth). The protease and glucosidase enzymatic activity rates were also determined, as a proxy of organic matter degradation potential in the different sediment layers. Molecular fingerprinting based on automated ribosomal intergenic spacer analysis (ARISA) indicated that the alpha-diversity of bacterial assemblages remained high throughout the vertical profile and that the turnover (beta-) diversity among sediment horizons reached values up to 90% of dissimilarity. Multivariate distance-based linear modeling (DISTLM) pointed out that the diversity and functioning of the hadal bacterial assemblages were influenced by the variability of environmental conditions (including the availability of organic resources and electron donors/acceptors) and of viral production rates along the sediment vertical profile. Based on our results, we can argue that the heterogeneity of physical-chemical features of the hadal sediments of the Izu-Bonin Trench contribute to increase the niches availability for different bacterial taxa, while viruses contribute to maintain high levels of bacterial turnover diversity and to enhance organic matter cycling in these extremely remote and isolated ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据