4.8 Article

Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1

期刊

ELIFE
卷 8, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.47005

关键词

-

类别

资金

  1. Royal Society [UF090321]
  2. H2020 European Research Council [678511]
  3. Biotechnology and Biological Sciences Research Council [BB/L006219/1]
  4. BBSRC [BB/L006219/1] Funding Source: UKRI
  5. European Research Council (ERC) [678511] Funding Source: European Research Council (ERC)
  6. Royal Society [UF090321] Funding Source: Royal Society

向作者/读者索取更多资源

Activation of systemic acquired resistance in plants is associated with transcriptome reprogramming induced by the unstable coactivator NPR1. Immune-induced ubiquitination and proteasomal degradation of NPR1 are thought to facilitate continuous delivery of active NPR1 to target promoters, thereby maximising gene expression. Because of this potentially costly sacrificial process, we investigated if ubiquitination of NPR1 plays transcriptional roles prior to its proteasomal turnover. Here we show ubiquitination of NPR1 is a progressive event in which initial modification by a Cullin-RING E3 ligase promotes its chromatin association and expression of target genes. Only when polyubiquitination of NPR1 is enhanced by the E4 ligase, UBE4, it is targeted for proteasomal degradation. Conversely, ubiquitin ligase activities are opposed by UBP6/7, two proteasome-associated deubiquitinases that enhance NPR1 longevity. Thus, immune-induced transcriptome reprogramming requires sequential actions of E3 and E4 ligases balanced by opposing deubiquitinases that fine-tune activity of NPR1 without strict requirement for its sacrificial turnover.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据