4.2 Article

Polydatin Inhibits Adipose Tissue Inflammation and Ameliorates Lipid Metabolism in High-Fat-Fed Mice

期刊

BIOMED RESEARCH INTERNATIONAL
卷 2019, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2019/7196535

关键词

-

资金

  1. Zhejiang Provincial Health Bureau Science Foundation, Hangzhou, China [2018RC073, 2016KYB292]
  2. Zhejiang Provincial Natural Science Foundation of China, Hangzhou, China [LY16H070007]
  3. Zhejiang Traditional Chinese Medicine Foundation Project, Hangzhou, China [2014ZB119]
  4. Project of Science and Technology Bureau of Jiaxing, Jiaxing, China [2016BY28022]

向作者/读者索取更多资源

Polydatin (PD), an active component of Chinese herbs, is reported to have many biological functions, such as cardioprotective actions, anti-inflammatory activities, and antitumor effects. In this study, we investigated the effects of PD on body weight control, glucose and lipid metabolic regulation, and anti-inflammation in a high-fat-diet- (HFD-) induced obese mice model. After treatment of PD (100 mg/kg/d for 4 weeks), HFD mice reduced body weight, retroperitoneal fat mass, and adipose cell sizes; significantly lowered serum total cholesterol triglyceride (TG) and low-density lipoprotein (LDL) levels; and increased high-density lipoprotein (HDL) levels compared with the HFD control mice. Further studies showed that PD downregulated the mRNA and protein expressions of peroxisome proliferator-activated receptor gamma (PPAR gamma), a transcription factor involving in the regulation of adipocyte differentiation, in the retroperitoneal fat of HFD mice. Additionally, PD significantly upregulated the mRNA and protein expressions of leptin, an adipocyte-derived anorexic hormone that regulates food intake and energy expenditure, in the adipose tissues of HFD mice. Moreover, PD reduced the expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-alpha) in the retroperitoneal and epididymal tissues of HFD mice, suggesting that PD prevented adipose tissue inflammation. In conclusion, PD may serve as a pharmaceutic candidate for obesity-related lipid metabolism, anti-inflammation, and body weight loss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据