4.6 Article

Determining Ultralow Absorption Coefficients of Organic Semiconductors from the Sub-Bandgap Photovoltaic External Quantum Efficiency

期刊

ADVANCED OPTICAL MATERIALS
卷 8, 期 1, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201901542

关键词

absorption coefficient; external quantum efficiency; organic photodetectors; organic solar cells; sub-bandgap states

资金

  1. Welsh Government's Ser Cymru II Program 'Sustainable Advanced Materials' (Welsh European Funding Office - European Regional Development Fund)
  2. UKRI EPSRC Doctoral Training Program studentship
  3. Welsh Government's Ser Cymru II 'Sustainable Advanced Materials' Program (European Regional Development Fund)
  4. Welsh Government's Ser Cymru II 'Sustainable Advanced Materials' Program (Welsh European Funding Office)
  5. Welsh Government's Ser Cymru II 'Sustainable Advanced Materials' Program (Swansea University Strategic Initiative)
  6. EPSRC [EP/N020863/1] Funding Source: UKRI

向作者/读者索取更多资源

Energy states below the bandgap of a semiconductor, such as trap states or charge transfer states in organic donor-acceptor blends, can contribute to light absorption. Due to their low number density or ultrasmall absorption cross-section, the absorption coefficient of these states is challenging to measure using conventional transmission/reflection spectrophotometry. As an alternative, the external quantum efficiency (EQE) of photovoltaic devices is often used as a representative of the absorption coefficient, where the spectral line shape of the EQE is considered to follow the absorption coefficient of the active layer material. Here, it is shown that the sub-bandgap EQE is subject to thickness dependent low finesse cavity interference effects within the device-making this assumption questionable. A better estimate for the absorption coefficient is obtained when EQE spectra corresponding to different active layer thicknesses are fitted simultaneously for one attenuation coefficient using an iterative transfer matrix method. The principle is demonstrated for two model acceptor-donor systems (PCE12-ITIC and PBTTT-PC71BM) and accurate subgap absorption coefficients are determined. This approach has particular relevance for both understanding subgap states and their utilization in organic optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据