4.6 Article

Synergy of a Metallic NiCo Dimer Anchored on a C2N-Graphene Matrix Promotes the Electrochemical CO2 Reduction Reaction

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 7, 期 23, 页码 19113-19121

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.9b05042

关键词

CO2 reduction; electrocatalysis; C2N-gaphene; dimer; density functional theory

资金

  1. National Natural Science Foundation of China [21673137]
  2. Science and Technology Commission of Shanghai Municipality [16ZR1413900]
  3. Scientific Data and Computing Center, a component of the Computational Science Initiative, at Brookhaven National Laboratory [DE-SC0012704]

向作者/读者索取更多资源

Gaining mechanistic insights into the active site is essential to rational design of a high-performance cathode catalyst for the electrochemical CO2 reduction reaction (CO2 RR). Here, by means of density functional theory and computational hydrogen electrode methods, we investigated synergy of a metallic NiCo dimer anchored on a C2N graphene matrix for promoting the CO2 RR. It is found that heterometallic NiCo@C2N (U-L = -0.25 V) outperforms homometallic Co-2@C2N (U-L = -0.30 V) and Ni-2@C2N (U-L = -0.67 V) for catalyzing the CO2 RR toward CH4 formation owing to its synergy within the dimer. We emphasize the impact of co-adsorbed *H, *OH, and *CO intermediates on the CO2 RR, revealing that multiple competing reaction channels are accessible from viable co-adsorbates. Moreover, strongly-bound *H, *OH, and *CO intermediates are predicted not to deactivate metallic dimer sites for a continuous cycle of the CO2 RR Our study could provide a theoretical basis for optimizing a metallic dimer anchored on a N-doped graphene matrix for achieving a more advanced CO2 RR cathode with enhanced activity and selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据