4.7 Article

Sub-Daily Temperature Heterogeneity in a Side Channel and the Influence on Habitat Suitability of Freshwater Fish

期刊

REMOTE SENSING
卷 11, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/rs11202367

关键词

thermal remote sensing; river management; restoration measures; unmanned airborne vehicle; species sensitivity distribution

资金

  1. Dutch Technology Foundation TTW, part of the Netherlands Organization for Scientific Research (NWO)
  2. Ministry of Economic Affairs [P12-14]

向作者/读者索取更多资源

Rising surface water temperatures in fluvial systems increasingly affect biodiversity negatively in riverine ecosystems, and a more frequent exceedance of thermal tolerance levels of species is expected to impoverish local species assemblages. Reliable prediction of the effect of increasing water temperature on habitat suitability requires detailed temperature measurements over time. We assessed (1) the accuracy of high-resolution images of water temperature of a side channel in a river floodplain acquired using a consumer-grade thermal camera mounted on an unmanned airborne vehicle (UAV), and (2) the associated habitat suitability for native and alien fish assemblages. Water surface temperatures were mapped four times throughout a hot summer day and calibrated with 24 in-situ temperature loggers in the water at 0.1 m below the surface using linear regression. The calibrated thermal imagery was used to calculate the potentially occurring fraction (POF) of freshwater fish using species sensitivity distributions. We found high temperatures (25-30 degrees C) in the side channel during mid-day resulting in reduced habitat suitability. The accuracy of water temperature estimates based on the RMSE was 0.53 degrees C over all flights (R-2 = 0.94). Average daily POF was 0.51 and 0.64 for native and alien fish species in the side channel. The error of the POF estimates is 76% lower when water temperature is estimated with thermal UAV imagery compared to temperatures measured at an upstream gauging station. Accurately quantifying water temperature and the heterogeneity thereof is a critical step in adaptation of riverine ecosystems to climate change. Our results show that measurements of surface water temperature can be made accurately and easily using thermal imagery from UAVs allowing for an improved habitat management, but coincident collection of long wave radiation is needed for a more physically-based prediction of water temperature. Because of climate change, management of riverine ecosystems should consider thermal pollution control and facilitate cold water refugia and connectivity between waterbodies in floodplains and the cooler main channel for fish migration during extremely hot summer periods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据