4.7 Article

Investigation on the Synthesis Process of Bromoisobutyryl Esterified Starch and Its Sizing Properties: Viscosity Stability, Adhesion and Film Properties

期刊

POLYMERS
卷 11, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/polym11121936

关键词

bromoisobutyryl esterification; cornstarch; synthesis process; past stability; adhesion; film properties

资金

  1. Natural Science Foundation of Anhui Province [1908085ME124]
  2. Key Research and Development Program of Anhui Province [201904a06020001]
  3. Pre-research Project of National Natural Science Foundation of China [2018yyzr08]
  4. Science and Technology Planning Project ofWuhu City [2018pt04]

向作者/读者索取更多资源

To confirm the suitable synthesis process parameters of preparing bromoisobutyryl esterified starch (BBES), the influences of the synthesis process parameters-amount of 2-bromoisobutyryl bromide (BIBB), amount of catalyst (DMAP), reaction temperature and reaction time-upon the degree of substitution (DS) were investigated. Then, to produce a positive effect on the properties of graft copolymers of BBES prepared in the near future, a series of BBES samples were successfully prepared, and their sizing properties, such as apparent viscosity and viscosity stability, adhesion, and film properties, were examined. The BBES granules were characterized by Fourier transform infra-red spectroscopy and scanning electron microscopy. The adhesion was examined by determining the bonding forces of the sized polylactic acid (PLA) and polyester roving. The film properties were investigated in terms of tensile strength, breaking elongation, degree of crystallinity, and cross-section analysis. The results showed that a suitable synthesis process of BBES was: reaction time of 24 h, reaction temperature of 40 degrees C, and 0.23 in the molar ratio of 4-dimethylaminopyridine to 2-bromoisobutyryl bromide. The bromoisobutyryl esterification played the important roles in the properties of the starch, such as paste stabilities of above 85% for satisfying the requirement in the stability for sizing, improvement of the adhesion to polylactic acid and polyester fibers, and reduction of film brittleness. With rising DS, bonding forces of BBES to the fibers increased and then decreased. BBES (DS = 0.016) had the highest force and breaking elongation of the film. Considering the experimental results, BBES (DS = 0.016) showed potential in the PLA and polyester sizing, and will not lead to a negative influence on the properties of graft copolymers of BBES.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据