4.6 Article

Functional diversity among sensory neurons from efficient coding principles

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 15, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1007476

关键词

-

资金

  1. NIH
  2. Gatsby Charitable Foundation
  3. Swartz Foundation
  4. Max Planck Society
  5. Burroughs-Wellcome Career Award at the Scientific Interface

向作者/读者索取更多资源

Author summary The brain processes external stimuli through special receptor cells and associated sensory circuits. In many sensory systems the population of neurons splits into ON and OFF cells, namely cells that signal an increase vs. a decrease of the sensory variable. This happens in brains from worm to man, and in the sensing of temperature, odor, light, and sound. Here we analyze the possible benefits of pathway splitting using information theory. We derive the most efficient split of a pathway into ON and OFF neurons and predict the response range of each neuron type as a function of noise and stimulus statistics. Our theory offers insight into this ubiquitous phenomenon of neural organization and suggests new experiments in diverse sensory systems. In many sensory systems the neural signal is coded by the coordinated response of heterogeneous populations of neurons. What computational benefit does this diversity confer on information processing? We derive an efficient coding framework assuming that neurons have evolved to communicate signals optimally given natural stimulus statistics and metabolic constraints. Incorporating nonlinearities and realistic noise, we study optimal population coding of the same sensory variable using two measures: maximizing the mutual information between stimuli and responses, and minimizing the error incurred by the optimal linear decoder of responses. Our theory is applied to a commonly observed splitting of sensory neurons into ON and OFF that signal stimulus increases or decreases, and to populations of monotonically increasing responses of the same type, ON. Depending on the optimality measure, we make different predictions about how to optimally split a population into ON and OFF, and how to allocate the firing thresholds of individual neurons given realistic stimulus distributions and noise, which accord with certain biases observed experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据