4.4 Article

Voluntary wheel running promotes myelination in the motor cortex through Wnt signaling in mice

期刊

MOLECULAR BRAIN
卷 12, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13041-019-0506-8

关键词

Voluntary running exercise; Oligodendrocyte; Myelination; Motor functions; Wnt signaling; Mice

资金

  1. National Natural Science Foundation of China [81471116, 31771182, 81560196]
  2. Natural Science Foundation of Jiangxi Province [20171ACB20002]

向作者/读者索取更多资源

Myelin of the central nervous system exhibits strong plasticity, and skill learning exercise promotes oligodendrogenesis and adaptive myelination. Increasing evidence shows that brain structures and functions are affected by physical activity. However, the impact of voluntary physical activity on central myelination and its underlying mechanism remains unclear. The present study aimed to investigate the effect of voluntary wheel running (VWR) on central oligodendrogenesis and adaptive myelination in mice. Adult C57BL/6 J mice were placed in running wheels and allowed for voluntary running 2 weeks. Myelin levels in the central nervous system were detected using western blotting, qRT-PCR, immunohistochemical staining, and electron microscopy. Oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs) were detected using immunohistochemical staining and 5-bromo-2-deoxyuridine (BrdU) assays. Motor abilities of the animals were examined using open-field, rotarod running, and beam-walking behavioral paradigms. Vital molecules of Wnt signaling were detected, and the involvement of such molecules was verified using in vitro culture of OPCs. Our results showed that VWR significantly enhanced the myelination in the motor cortex. VWR promoted the proliferation and differentiation of OPCs, and the maturation of OLs. The VWR-regulated myelination was associated with the improved motor skill and decreased mRNA level of Wnt3a/9a, whereas stimulation of Wnt signaling pathway with Wnt3a or Wnt9a suppressed OPCs proliferation and differentiation in vitro. The present study demonstrated that physical activity is highly efficient at promoting myelination in the motor cortex, by enhancing the proliferation of OPCs and accelerating the generation of myelin, providing a step forward in understanding the beneficial effects of physical activity on central myelination and its underlying mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据