4.7 Article

The Dynamics of Living and Dead Fine Roots of Forest Biomes across the Northern Hemisphere

期刊

FORESTS
卷 10, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/f10110953

关键词

fine root biomass; fine root necromass; forest biome; monthly; precipitation; seasonal dynamics; temperature

类别

资金

  1. Natural Science Foundation of China [41971052, 31500354]
  2. National Key R&D Program of China [2019YFA0607300]
  3. China Postdoctoral Science Foundation [2016M601343, 2018T110232]

向作者/读者索取更多资源

Research Highlights: A detailed picture of the seasonality in fine root biomass (FRB), necromass (FRN), and the biomass/necromass ratio (FRBN) throughout the whole year is crucial to uncover profound effects of long-term environmental changes on fine root dynamics. Materials and Methods: We used meta-analysis to characterize the variability of FRB, FRN and FRBN, and determined their relations with climatic (monthly versus annual), edaphic and geomorphic factors for tropical, temperate and boreal forest biomes across the Northern Hemisphere. Results: Boreal forests exhibited the highest FRB and FRN, while tropical forests yielded the lowest FRN, and thus the greatest FRBN. FRB and FRN significantly decreased with sampling depth, but increased with soil organic carbon content and elevation, while an opposite pattern was found for FRBN. Temperature and precipitation at different time scales (monthly versus annual) and latitude had varying influences on fine roots. High FRB and FRN were observed during dry season for tropical forests, but in the late growing season for temperate forests. The three forest biomes exhibited the high root activity (measured as FRBN) in June or July. Conclusions: It is crucial to realize the universal and specific responses of fine roots to multiple environmental factors when attempting to incorporate these parameters into fine root monthly dynamic models in forest ecosystems. The biome-specific fluctuation of fine roots contributes to identify the influence factors on fine root seasonal patterns throughout the whole year. Our analysis is expected to improve the understanding of the key role of fine roots at monthly level in modeling and predicting carbon budget of various forest biomes under future climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据