4.5 Article

Spatially explicit models of seasonal habitat for greater sage-grouse at broad spatial scales: Informing areas for management in Nevada and northeastern California

期刊

ECOLOGY AND EVOLUTION
卷 10, 期 1, 页码 104-118

出版社

WILEY
DOI: 10.1002/ece3.5842

关键词

Centrocercus urophasianus; Great Basin; resource selection function; sage-grouse; seasonal mapping; spatiotemporal variation

向作者/读者索取更多资源

Defining boundaries of species' habitat across broad spatial scales is often necessary for management decisions, and yet challenging for species that demonstrate differential variation in seasonal habitat use. Spatially explicit indices that incorporate temporal shifts in selection can help overcome such challenges, especially for species of high conservation concern. Greater sage-grouse Centrocercus urophasianus (hereafter, sage-grouse), a sagebrush obligate species inhabiting the American West, represents an important case study because sage-grouse exhibit seasonal habitat patterns, populations are declining in most portions of their range and are central to contemporary national land use policies. Here, we modeled spatiotemporal selection patterns for telemetered sage-grouse across multiple study sites (1,084 sage-grouse; 30,690 locations) in the Great Basin. We developed broad-scale spatially explicit habitat indices that elucidated space use patterns (spring, summer/fall, and winter) and accounted for regional climatic variation using previously published hydrographic boundaries. We then evaluated differences in selection/avoidance of each habitat characteristic between seasons and hydrographic regions. Most notably, sage-grouse consistently selected areas dominated by sagebrush with few or no conifers but varied in type of sagebrush selected by season and region. Spatiotemporal variation was most apparent based on availability of water resources and herbaceous cover, where sage-grouse strongly selected upland natural springs in xeric regions but selected larger wet meadows in mesic regions. Additionally, during the breeding period in spring, herbaceous cover was selected strongly in the mesic regions. Lastly, we expanded upon an existing joint-index framework by combining seasonal habitat indices with a probabilistic index of sage-grouse abundance and space use to produce habitat maps useful for sage-grouse management. These products can serve as conservation planning tools that help predict expected benefits of restoration activities, while highlighting areas most critical to sustaining sage-grouse populations. Our joint-index framework can be applied to other species that exhibit seasonal shifts in habitat requirements to help better guide conservation actions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据