4.5 Article

Ocean warming and acidification alter the behavioral response to flow of the sea urchin Paracentrotus lividus

期刊

ECOLOGY AND EVOLUTION
卷 9, 期 21, 页码 12128-12143

出版社

WILEY
DOI: 10.1002/ece3.5678

关键词

behavior; biomechanics; climate change; flow; hydrodynamics; ocean acidification; ocean warming; physiology; sea urchin

资金

  1. Fund for Research in Industry and Agriculture (F.R.I.A)
  2. National Fund for Scientific Research (FRS-FNRS, Belgium)

向作者/读者索取更多资源

Ocean warming (OW) and acidification (OA) are intensively investigated as they pose major threats to marine organism. However, little effort is dedicated to another collateral climate change stressor, the increased frequency, and intensity of storm events, here referred to as intensified hydrodynamics. A 2-month experiment was performed to identify how OW and OA (temperature: 21 degrees C; pH(T): 7.7, 7.4; control: 17 degrees C-pH(T)7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus lividus using an integrative approach that includes physiology, biomechanics, and behavior. Biomechanics was studied under both no-flow condition at the tube foot (TF) scale and flow condition at the individual scale. For the former, TF disk adhesive properties (attachment strength, tenacity) and TF stem mechanical properties (breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. For the latter, resistance to flow was addressed as the flow velocity at which individuals detached. Under near- and far-future OW and OA, individuals fully balanced their acid-base status, but skeletal growth was halved. TF adhesive properties were not affected by treatments. Compared to the control, mechanical properties were in general improved under pH(T)7.7 while in the extreme treatment (21 degrees C-pH(T)7.4) breaking force was diminished. Three behavioral strategies were implemented by sea urchins and acted together to cope with flow: improving TF attachment, streamlining, and escaping. Behavioral responses varied according to treatment and flow velocity. For instance, individuals at 21 degrees C-pH(T)7.4 increased the density of attached TF at slow flows or controlled TF detachment at fast flows to compensate for weakened TF mechanical properties. They also showed an absence of streamlining favoring an escaping behavior as they ventured in a riskier faster movement at slow flows. At faster flows, the effects of OW and OA were detrimental causing earlier dislodgment. These plastic behaviors reflect a potential scope for acclimation in the field, where this species already experiences diel temperature and pH fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据