4.8 Article

The X-Linked Intellectual Disability Gene Zdhhc9 Is Essential for Dendrite Outgrowth and Inhibitory Synapse Formation

期刊

CELL REPORTS
卷 29, 期 8, 页码 2422-+

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2019.10.065

关键词

-

资金

  1. CIHR [PJT-148938, 10677]
  2. BC Epilepsy Society
  3. CURE Taking Flight Award
  4. Canada Research Chair in Biotechnology and Genomics-Neurobiology
  5. Koerner Foundation
  6. NIH [OD010921]

向作者/读者索取更多资源

Palmitoylation is a reversible post-translational lipid modification that facilitates vesicular transport and subcellular localization of modified proteins. This process is catalyzed by ZDHHC enzymes that are implicated in several neurological and neurodevelopmental disorders. Loss-of-function mutations in ZDHHC9 have been identified in patients with X-linked intellectual disability (XLID) and associated with increased epilepsy risk. Loss of Zdhhc9 function in hippocampal cultures leads to shorter dendritic arbors and fewer inhibitory synapses, altering the ratio of excitatory-to-inhibitory inputs formed onto Zdhhc9-deficient cells. While Zdhhc9 promotes dendrite outgrowth through the palmitoylation of the GTPase Ras, it promotes inhibitory synapse formation through the palmitoylation of another GTPase, TC10. Zdhhc9 knockout mice exhibit seizure-like activity together with increased frequency and amplitude of both spontaneous and miniature excitatory and inhibitory postsynaptic currents. These findings present a plausible mechanism for how the loss of ZDHHC9 function may contribute to XLID and epilepsy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据