4.5 Article

A Systematic Comparison of Mathematical Models for Inherent Measurement of Ciliary Length: How a Cell Can Measure Length and Volume

期刊

BIOPHYSICAL JOURNAL
卷 108, 期 6, 页码 1361-1379

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2014.12.051

关键词

-

资金

  1. NIH [R01 GM097017]
  2. NSF-GRFP

向作者/读者索取更多资源

Cells control organelle size with great precision and accuracy to maintain optimal physiology, but the mechanisms by which they do so are largely unknown. Cilia and flagella are simple organelles in which a single measurement, length, can represent size. Maintenance of flagellar length requires an active transport process known as intraflagellar transport, and previous measurements suggest that a length-dependent feedback regulates intraflagellar transport. But the question remains: how is a length-dependent signal produced to regulate intraflagellar transport appropriately? Several conceptual models have been suggested, but testing these models quantitatively requires that they be cast in mathematical form. Here, we derive a set of mathematical models that represent the main broad classes of hypothetical size-control mechanisms currently under consideration. We use these models to predict the relation between length and intraflagellar transport, and then compare the predicted relations for each model with experimental data. We find that three models-an initial bolus formation model, an ion current model, and a diffusion-based model-show particularly good agreement with available experimental data. The initial bolus and ion current models give mathematically equivalent predictions for length control, but fluorescence recovery after photo-bleaching experiments rule out the initial bolus model, suggesting that either the ion current model or a diffusion-based model is more likely correct. The general biophysical principles of the ion current and diffusion-based models presented here to measure cilia and flagellar length can be generalized to measure any membrane-bound organelle volume, such as the nucleus and endoplasmic reticulum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据