4.7 Article

FlySilico: Flux balance modeling of Drosophila larval growth and resource allocation

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-019-53532-4

关键词

-

资金

  1. German Bundesministerium fur Bildung und Forschung (BMBF) grant [031A 306]
  2. Jurgen Manchot Foundation

向作者/读者索取更多资源

Organisms depend on a highly connected and regulated network of biochemical reactions fueling life sustaining and growth promoting functions. While details of this metabolic network are well established, knowledge of the superordinate regulatory design principles is limited. Here, we investigated by iterative wet lab and modeling experiments the resource allocation process during the larval development of Drosophila melanogaster. We chose this system, as survival of the animals depends on the successful allocation of their available resources to the conflicting processes of growth and storage metabolite deposition. First, we generated FlySilico, a curated metabolic network of Drosophila, and performed time-resolved growth and metabolite measurements with larvae raised on a holidic diet. Subsequently, we performed flux balance analysis simulations and tested the predictive power of our model by simulating the impact of diet alterations on growth and metabolism. Our predictions correctly identified the essential amino acids as growth limiting factor, and metabolic flux differences in agreement with our experimental data. Thus, we present a framework to study important questions of resource allocation in a multicellular organism including process priorization and optimality principles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据