4.7 Article

Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-019-52379-z

关键词

-

资金

  1. IMRA JAPAN AWARD
  2. Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research
  3. JSPS KAKENHI [19J13179, JP18H03857]
  4. Grants-in-Aid for Scientific Research [19J13179] Funding Source: KAKEN

向作者/读者索取更多资源

Cutinases are promising agents for poly(ethylene terephthalate) (PET) bio-recycling because of their ability to produce the PET monomer terephthalic acid with high efficiency under mild reaction conditions. In this study, we found that the low-crystallinity PET (lcPET) hydrolysis activity of thermostable cutinase from Thermobifida fusca (TfCut2), was increased by the addition of cationic surfactant that attracts enzymes near the lcPET film surface via electrostatic interactions. This approach was applicable to the mutant TfCut2 G62A/F209A, which was designed based on a sequence comparison with PETase from Ideonella sakaiensis. As a result, the degradation rate of the mutant in the presence of cationic surfactant increased to 31 +/- 0.1 nmol min(-1) cm(-2), 12.7 times higher than that of wild-type TfCut2 in the absence of surfactant. The long-duration reaction showed that lcPET film (200 mu m) was 97 +/- 1.8% within 30 h, the fastest biodegradation rate of lcPET film thus far. We therefore believe that our approach would expand the possibility of enzyme utilization in industrial PET biodegradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据