4.7 Article

Constitutive PGC-1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-48795-w

关键词

-

资金

  1. Swedish Research Council
  2. Swedish Childhood Cancer Foundation
  3. Drottning Silvias Jubileumsfond
  4. Goteborgs Lakarsallskap
  5. Wilhelm & Martina Lundgrens Vetenskapsfond
  6. Stroke-Riksforbundet
  7. Hjarnfonden
  8. Stiftelsen Fru Mary von Sydows donationsfond
  9. Swedish Institute Scholarship
  10. National Microscopy Infrastructure, NMI [VR-RFI 2016-00968]

向作者/读者索取更多资源

Aerobic exercise prevents age-dependent decline in cognition and hippocampal neurogenesis. The transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1 alpha) mediates many of the exercise-induced benefits in skeletal muscle, including the release of factors into the circulation with neurotrophic effects. We use a transgenic mouse model with muscle-specific overexpression of PGC-1 alpha to study the contribution of chronic muscle activation on exercise-induced effects on hippocampal neurogenesis in aging. Young and old transgenic and wild type animals of both sexes displayed a robust age-related reduction in newborn BrdU+-cells, immature neurons (DCX+-cells) and new mature BrdU(+)/NeuN(+)-neurons in the dentate gyrus. No differences were detected between genotypes or sexes. Analysis of serum proteins showed a tendency towards increased levels of myokines and reduced levels of pro-inflammatory cytokines for transgenic animals, but only musclin was found to be significantly up-regulated in transgenic animals. We conclude that constitutive muscular overexpression of PGC-1 alpha, despite potent systemic changes, is insufficient for mimicking exercise-induced effects on hippocampal neurogenesis in aging. Continued studies are required to investigate the complex molecular mechanisms by which circulating signals could mediate exercise-induced effects on the central nervous system in disease and aging, with the aim of discovering new therapeutic possibilities for patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据